Jian Cai¹ Ricardo Marquez¹ Michael F. Modest²

¹Postdoctoral Research Associate

²Shaffer and George Professor of Engineering University of California Merced Merced, CA 95343, USA

DE-FG26-10FE0003801

May 2012 — Pittsburgh

Radiation Challenges in Multi-Phase Reacting Flows

•000

- Radiative heat transfer in high temperature combustion systems
 - Thermal radiation becomes very important at elevated temperatures
 - Coal and hydrocarbon fuels $C_nH_m \to H_2O$, CO_2 , CO, NO_x , soot, char, ash
 - CO₂, H₂O, soot, char and ash strongly emit and absorb radiative energy (lower temperature levels)
 - Radiative effects are conveniently ignored or treated with very crude models
 - Neglecting radiation ⇒ temperature overpredicted by several hundred °C
 - "optically-thin" or gray radiation ⇒ temperature underpredicted by up to 100°C
 - Neglecting turbulence–radiation interactions ⇒ temperature overpredicted by 100°C or more
 - In contrast: simple vs. full chemical kinetics ⇒ same overall heat release and similar temperature profiles

State of the Art of Radiation Modeling

- Radiative Transfer Equation (RTE) Solvers
 - DOM/FVM included in CFD codes (ray effects, poor for optically thick media, high orders expensive)
 - SHM/P-N: P-1 in CFD codes (cheap and powerful; poor for optically thin media); higher orders (P-N) complex
 - Photon Monte Carlo (very powerful; expensive, statistical scatter); ideal for stochastic turbulence models
 - P-1 ideal solver for optically thicker pulverized coal/fluidized beds
- Spectral Models
 - Full-spectrum k-distributions (very efficient; cumbersome assembly, species overlap issues)
 - Line-by-line Monte Carlo module (outstanding accuracy at small additional cost)

Research Objectives

Introduction

- Spectral radiation properties of particle clouds
 - o coal, ash, lime stone, etc.,
 - varying size distributions and particle loading
 - classified, pre-evaluated and stored in appropriate databases or regression models
- Spectral radiation models for particle clouds
 - Adapt high-fidelity spectral radiation models for combustion gases
 - Extensions to large absorbing/emitting-scattering particles in fluidized bed and pulverized coal combustors
 - New gas-particle mixing models and consideration of scattering
- RTE solution module
 - *P*–1 (and perhaps a *P*–3) solver (for optically thick applications)
 - Photon Monte Carlo solver (for validation and for optically thinner applications)
- Validation of Radiation Models
 - Module connected to MFIX and OpenFOAM
 - Comparison with experimental data available in the literature
 - Simulations for fluidized beds and pulverized-coal flames

 Introduction
 Task Description
 Sample calculations
 LBL-PMC
 Future Work

 OOO●
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○<

Accomplishments

- Radiative spectral properties database and regression models
 - Surveyed radiative properties measurements of coal combustion particles
 - Compiled a radiative property database of particles in coal combustion
- Spectral calculation models
 - Ported previously developed gas-soot module to MFIX
 - Generated CO₂ and H₂O k-distribution correlations
 - Developed particle spectral properties calculation module
 - Developed new regression scheme for splitting radiative heat source
 - Ported spectral module to OpenFOAM
- Radiative Transfer Equation (RTE) solver
 - Implemented P-1 RTE solver for both gray and nongray participating media
 - Implemented Monte Carlo RTE solver for both gray and nongray media
 - Verification against line-by-line (LBL) solutions for 1D homogeneous slab
 - Source code submitted for review
- CFD simulation
 - Radiative heat transfer in a fluidized-bed coal combustor (P-1 with CO2-char k-distribution)

RTE Solution Module

P-1 Solver:

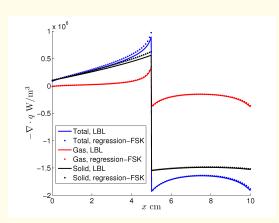
- Ideal RTE solver for expected large optical thicknesses
- Single-scale full-spectrum k-distribution, assembled from narrow-band data for particulates and gas k-distributions
- One RTE solution, but separate emission and absorption terms for individual phases
- Extending to higher orders P-3 and P-5.

Photon Monte Carlo Solver

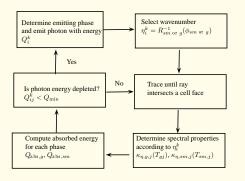
- Ported from our gas combustion work with LBL module
- Particulate emission and absorption added including extended wavenumber selection schemes and energy splitting across phases.
- To ascertain accuracy of P−1/replace it whenever necessary

Sample calculation—inhomogeneous medium

One dimensional slab with two layers


	Left	Right
Width	5cm	5cm
Gas		
Temperature	600K	1200K
Composition	5%CO ₂ , 95%(N ₂ +O ₂)	$10\%CO_2,90\%(N_2+O_2)$
Paticles		
Temperature	500K	1300K
Diameter	200 μ m	100 μ m
Volume fraction	10^{-3}	2.5×10^{-4}
Refractive index	2.2 - 1.12i	

- RTE solver P₁
- 64 quadrature points


Sample calculation—inhomogeneous medium, cont'd

- Predicts major trends
- Gas heat source is one. order less but vary accurate
- Gas radiation is from strong bands, regression scheme picks solid absorption coefficient at the corresponding wavenumbers
- Cold layer solid heat source inaccuracy due to $I_n \neq I_{bn}$
- Hot layer solid heat source within 1%

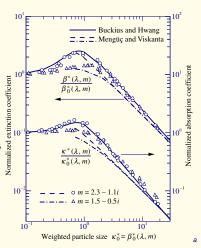
Line-by-line Photon Monte-Carlo

- Emission splitting
- Extended wavenumber selection scheme
- Random number relations based on Buckius and Hwang correlations
- Absorption splitting across gas and solid-phases

- Fully implemented a LBL-PMC module on MFIX for gas-particle mixtures, including energy splitting across phases.
- Validated PMC calculations with exact calculations for simple geometries.

Buckius and Hwang Correlations

$$f_A = \int_0^\infty \pi a^2 n(a) da = \frac{3f_v}{4\overline{r}}$$


$$\kappa_0^* = \Im \left[\frac{m^2 - 1}{m^2 + 2} \right] \frac{6\pi f_v \eta}{f_A} = C_0 \frac{f_v}{f_A} \eta$$

$$\frac{\kappa}{f_A} = \kappa^* = \left[\frac{1}{\left(\kappa_0^* (1 + 2.30 \kappa_0^{*2})\right)^{1.6}} + \frac{\kappa_0^{*1.76}}{1.66^{1.6}} \right]^{-1/1.6}$$

• If $\kappa_0^* \ll 1$, then $\kappa^* = \kappa_0^*$.

Introduction

 $\bullet \ \ \text{If } 1 \ll \kappa_0^*, \text{then } \kappa^* = 1.66 \times \kappa_0^{*-1.1}$

^aBuckius, R. O., and Hwang, D. C., 1980. "Radiation properties for polydispersions: Application to coal". ASME Journal of Heat Transfer, 102, pp. 143–159.

Random number relations for solid phases

• Random numbers vs η , T, f_v , f_A , C_0 .

$$R_{\eta} = \frac{\int_{0}^{\eta} \kappa_{\eta} I_{b\eta} d\eta}{\int_{0}^{\infty} \kappa_{\eta} I_{b\eta} d\eta}$$

$$= \frac{\int_{0}^{\eta^{*}} \kappa_{\eta}^{*} (\xi \times \eta^{*}) I_{b\eta^{*}} (\eta^{*}) d\eta^{*}}{\int_{0}^{\infty} \kappa_{\eta}^{*} (\xi \times \eta^{*}) I_{b\eta^{*}} (\eta^{*}) d\eta^{*}}$$

$$(1)$$

- Random numbers can be reduced to 2 variables.
- Critical value at $\xi \approx 0.001$ and $\xi \approx 0.1$

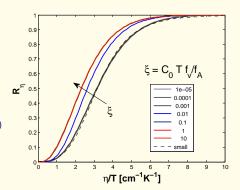
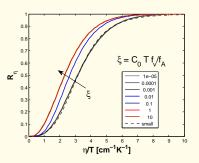
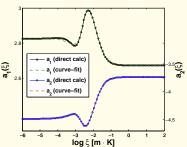
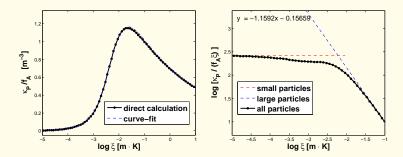




Figure : Random number vs η and T. The curve fitting is applied to the parametric function $f(\eta/T) = 1/2 + 1/2 \tanh(a_1(\eta/T)^{0.4} + a_2)$.

Curve-fitting coefficients for Random Number Relations



$$a_1(\xi) = \frac{2.826}{\exp(c_{12}(\log_{10}\xi + c_{11})) + 1} + \frac{2.673}{\exp(-c_{14}(\log_{10}\xi + c_{13})) + 1}$$

$$a_2(\xi) = \frac{-4.480}{\exp(c_{22}(\log_{10}\xi + c_{21})) + 1} + \frac{-3.738}{\exp(-c_{24}(\log\xi_{10} + c_{23})) + 1}$$

Planck-mean absorption coefficients

$$\log\left(\frac{\kappa_{\xi}^{*}}{\xi}\right) = \frac{2.425}{\exp(c_{32}(\log_{10}(\xi) + c_{31})) + 1} + \frac{-1.1592\log_{10}\xi - 0.15649}{\exp(-c_{34}(\log_{10}(\xi) + c_{32})) + 1}.$$

LBL-PMC Energy Splitting Across Phases

Absorption

where

$$\begin{aligned} \mathcal{Q}_{\text{abs},g,j} &= \sum_{i,k \in \mathbb{I}_j, \mathbb{K}_j} \mathcal{Q}_{ij}^k \left(1 - \exp(-\Delta \tau_{\eta,ij}^k) \right) w_g, \\ \mathcal{Q}_{\text{abs},sm,j} &= \sum_{i,k \in \mathbb{I}_j, \mathbb{K}_j} \mathcal{Q}_{ij}^k \left(1 - \exp(-\Delta \tau_{\eta,ij}^k) \right) w_{sm}, \end{aligned} \qquad \begin{matrix} \kappa_{g,i} &= \\ \xi_{m,i} &= \\ w_{g,j} &= \\ w_{g,j} &= \end{matrix}$$

$$\kappa_{g,i} = \left(\sum_{n} \kappa_{\eta p,n} x_{i}\right) p_{g,i}$$

$$\kappa_{s,m,i} = f_{A} \kappa_{\eta s,m}^{*}(\xi_{m,i})$$

$$\xi_{m,i} = C_{0,m} \varepsilon_{s,m} / f_{A} T_{s,m,i}$$

$$w_{g,j} = \frac{\kappa_{\eta,g,j}}{\kappa_{\eta,g,j} + \sum_{m=1}^{N_{g}} \kappa_{\eta,s,m}}$$

$$w_{s,m,j} = \frac{\kappa_{\eta,s,m,j}}{\kappa_{\eta,g,j} + \sum_{m=1}^{N_{g}} \kappa_{\eta,s,m}}$$

Emission

where

$$\begin{aligned} Q_{\text{emi},g,i} = & 4\pi \overline{\kappa}_{g,i} \sigma T_{g,i}^4 V_i \\ Q_{\text{emi},s,m,i} = & 4\pi \overline{\kappa}_{s,m,i} \sigma T_{s,m,i}^4 V_i \end{aligned}$$

$$\begin{split} \bar{\kappa}_{g,i} &= \left(\sum_{n} \bar{\kappa}_{p,n} x_{i}\right) p_{g,i} \varepsilon_{g,i} \\ \bar{\kappa}_{s,m,i} &= \frac{\varepsilon_{s,m,i}}{\bar{r}} \bar{\kappa}_{s,m}^{*} (\xi_{m,i}) \end{split}$$

 $\mathcal{E}_{m,i} = C_{0,m} \frac{4}{3r} T_{s,m,i}$

Future Work

Example calculations

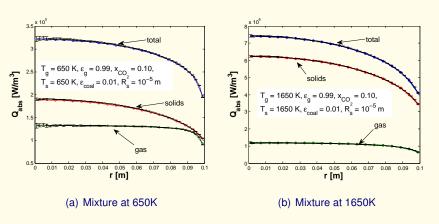


Figure : line-by-line PMC and exact solutions of $Q_{\rm abs}$ for gas- and solid-phase mixture enclosed by a cylinder.

Fluidized bed

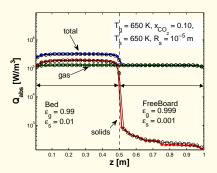


Figure: Colored lines are from exact solution. Black lines are PMC calculations.

Effort for Remaining Year

- Set up simulation of radiative heat transfer in dilute gas-solid reacting flows
- Comparisons between P-1 and Monte Carlo RTE solver
- Comparisons between various spectral models

